www.seahss.co.kr

SĕAH Changwon Integrated Special Steel

Korea

Head Office _

147, Jeokhyeon-ro, Seongsan-gu, Changwon-si, Gyeongsangnam-do, Korea T. 82-55-269-6235 F. 82-55-269-6914

Seoul Office

3F, 45, Yanghwa-ro, Mapo-gu, Seoul, Korea T. 82-2-6970-2328/2325/2344 F. 82-2-6970-2382

Overseas Office

____ China _

RM902, Aentna Tower, No. 107 Zunyi Rd., Shanghai, China T. 86-21-5228-0781

Japan _

No.503, Esaka Building, 1-30 Toyotsu-Cho, Suita-Shi, Osaka, Japan 564-0051 T. 81-6-6170-7657 F. 81-6-6170-7653

Germany_

2F, Martin-Luther-Platz 22, Dusseldorf 40212, Germany T. 49-152-26708513

Distributor

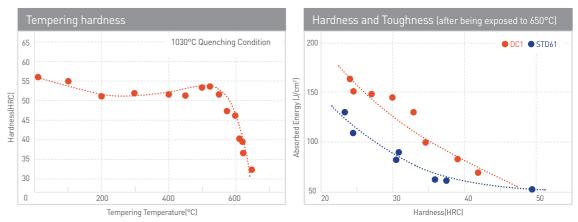
YONGJIN STECO CO.,LTD.	: 82-31-363-2361
Wonil Special Steel Co.,Ltd.	: 82-31-488-3952
Samyang Integrated Special Steel	: 82-51-312-3311
DY SPECIAL STEEL CO., LTD.	: 82-53-353-4455
YUJIN SPECIAL STEEL SALES	: 82-31-366-7641
JAEIL SPECIAL STEEL CO., LTD.	: 82-31-433-8651
Donghwa Special Steel Co.,Ltd.	: 82-31-432-0310
SHINKWANG HI-METAL CO., LTD.	: 82-31-499-2274
YOUNGDEUNGPO SPECIAL STEEL	: 82-31-493-7900
Kishin Corporation	: 82-31-822-8711
HOJIN TOTAL STEEL CO., LTD.	: 82-31-496-9003
DAEJIN CO.,LTD.	: 82-31-432-8193
DAISHIN GANGUP CO.,LTD.	: 82-2-808-5333
HANLIP CO., LTD.	: 82-31-433-4400
Changwon Steel Co.,Ltd.	: 82-55-282-7372

Tool Steel

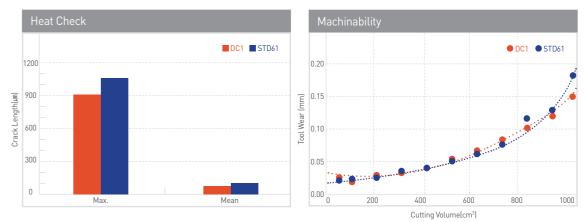
SeaH Changwon Integrated Special Steel

Tool Steel

SeAH


Premium Hot Work Tool Steel

DC1


Chemical composition (wt%)

Grade	С	Si	Mn	Cr	Мо	V
STD61	0.4	1.0	0.4	5.1	1.3	0.9
DC1	0.4	0.6	0.6	5.0	Add	Add

Mechanical properties

The hardness and impact toughness have been improved by the steel-making process and hot work process optimization.

The molds life can be improved as a result of the reduced heat check through improvement of high temperature strength and toughness. Also, machining costs can be reduced by improving machinability.

Application example

According to the evaluation of Company K, an automobile parts manufacturer, the mold life has been improved above present condition.

Application	Evaluation	Present
Die Casting	123,000ea (▲20%)	~ 100
Hot Forging	4,900ea (▲40%)	~ 3,1

Tool Steel

Major Ingredients and Uses

					(01)	and the second	
Grade		Che	emical co	- Use			
Orade	С	Si	Mn	Cr	Мо	V	035
STD61 -	0.4	1.0	0.4	5.1	1.3	0.9	Hot work tool steel
DC1 STD61 Modified	0.4	0.6	0.6	5.0	Add	Add	Premium hot work tool steel
STD11 -	1.5	0.3	0.3	12.0	0.9	0.3	Cold work tool steel
TD1 8Cr Stee	l 0.9	1.0	0.6	7.8	Add	Add +Al,Nb	Premium cold work tool steel for advanced high strength steel (HRC 55~60)
TD5 8Cr Stee	l 1.0	1.0	0.4	8.0	Add	Add +Al,Nb	Premium cold work tool steel for trimming dies (HRC 57~63)
TW27 8Cr Stee	l 1.0	1.0	0.4	7.5	Add	Add	Cold work tool steel for rolling dies (HRC 62~64)
KCW1 Matrix HSS	0.6	1.5	0.4	4.3	Add	Add	Cold/Hot forging tool steel (HRC 58~61)

General features

- Improved STD61 applicable for wide variety of uses
- Improved toughness and heat check resistance
- Superior high-temperature strength and machinability

Applications

Die Casting, Hot Forging, Extrusion

t Condition

0,000ea

,000ea

Die Casting Mold (timing Chain Cover)

Hot Forging Mold (Non Driven)

Tool Steel

Seah

Premium Cold Work Tool Steel for Advanced High Strength Steel

General features

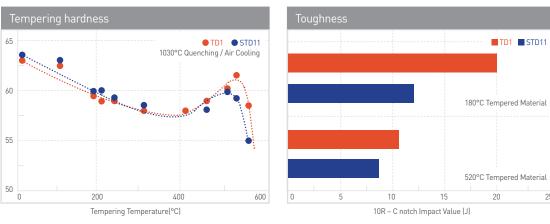
- Improved STD11 applicable for wide variety of uses
- Improved toughness and chipping resistance
- Improved machinability can reduce costs

Applications

Cold Press, Blanking Die for automotive parts

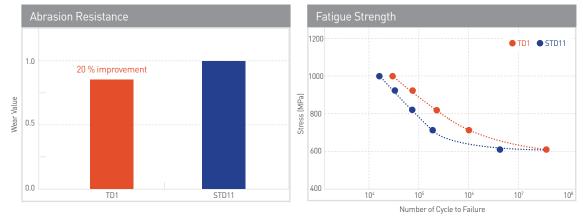
Chemical composition (wt%)

Grade	С	Si	Mn	Cr	Mo	V	Etc.
STD11	1.5	0.3	0.3	12.0	0.9	0.3	-
TD1	0.9	1.0	0.6	7.8	Add	Add	Al, Nb


Tool Steel SeAH

Premium Cold Work Tool Steel for Advanced High Strength Steel (ESR Grade)

Chemical composition (wt%)

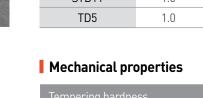

Grade	С	Si
STD11	1.5	0.3
TD5	1.0	1.0

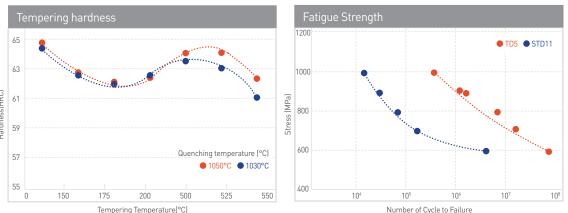
Mechanical properties

High hardness is secured in the high temperature tempering conditions better than STD11. The impact toughness is improved by reduced carbides size,

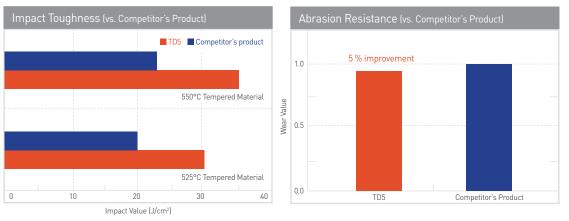
it is suitable for advanced high tensile steel sheets.

The mold life is expected to be extended through the improvement of abrasion resistance and fatigue strength. In particular, it can be used as a way to reduce mold breakages such as chipping.


Application example


According to the evaluation of Company S, an automobile parts manufacturer, the mold life has been improved above the present condition.

Application	Evaluation Result	Present Condition
B-Pillar mold	135,000ea (▲35%)	~ 100,000ea
Steel wheel mold	50,200ea (▲65%)	~ 30,000ea



Mold of Company "S" produced from TD1 (DP 980 forming)

Stable high hardness can be secured at high temperature tempering condition. Mold chipping and cracks can be reduced by improving fatigue strength.

More advanced impact toughness and abrasion resistance than competitor's product can improve the mold life.

Application example

According to the evaluation of Company I, an automobile parts manufacturer, the mold life has been improved above present condition.

Application	Evaluation Result	Present Conditi
Car seat mold	35,200ea (▲30%)	26,000ea
Crusher Blade	35 days	30 days

General features

- Specialized tool steel for cold trimming dies
- Superior abrasion resistance and impact toughness
- Superior nitrification and surface coating

Applications

Trimming Dies, Cold Forming Dies, Knife

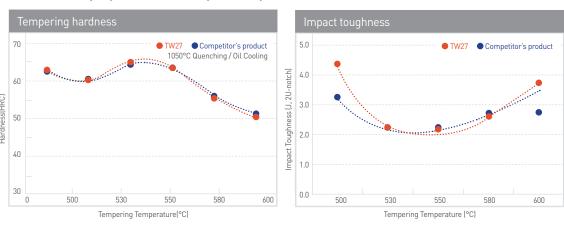
Mn	Cr	Мо		Etc.
0.3	12.0	0.9	0.3	-
0.4	8.0	Add	Add	Al, Nb

Chemical composition (wt%)

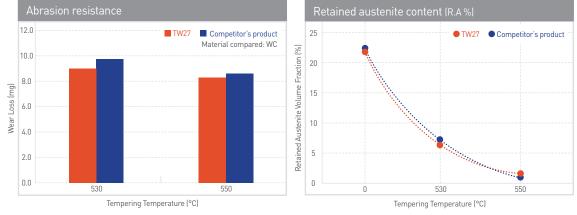
Grade	С	Si	Mn	Cr	Мо	V
STD11	1.5	0.3	0.3	12.0	0.9	0.3
TW27	1.0	1.0	0.4	7.5	Add	Add

General features

Applications


tempering (HRC 62 or higher)

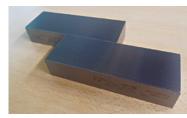
Rolling Dies, Fine Blanking Dies


- High hardness is secured after high temperature

- Superior abrasion resistance and impact toughness

Mechanical properties (vs. Competitor's product)

Hardness more than HRC 62 can be secured after high temperature tempering. Impact toughness is equivalent to or better than that of competitors' products.


Dispersed carbide can improve abrasion resistance.

Deformation is suppressed by controlling retained austenite after high temperature tempering. It can be used for stable rolling dies.

Application example

According to the evaluation of Company K, rolling dies manufacturer, the target mold life has been secured.

A	Evaluatio	- Target	
Application			
Company A	51,000ea	53,000ea	50,000ea 🔺
Company B	129,500ea	147,400ea	120,000ea 🔺

Company "A" Product Evaluation

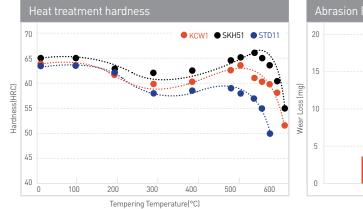
Company "I" mold produced from TD5

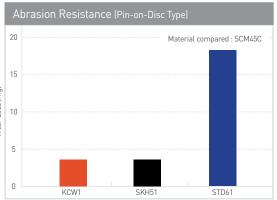
Product (Car seat mold)

SĕAH

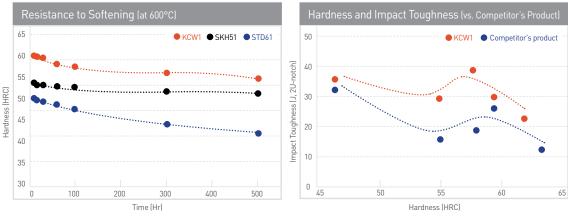
General features

- Superior crack and chipping resistance
- Improved impact toughness
- Hardness: HRC 58 ~ 61


Applications


Cold forging dies, Warm forging dies

Chemical composition (wt%)


Grade	С	Si	Mn	Cr	Мо	V
KCW1	0.6	1.5	0.4	4.3	Add	Add

Mechanical properties

An improved high hardness is secured as compared to cold work tool steel (STD11) Abrasion resistance is similar to that of high speed tool steel.

Hardness is stable under forging conditions.

The mold life can be improved through the improved hardness and toughness compared to competitors' products.

Application example

According to the evaluation of Company H and I, an automobile parts manufacturer, the target mold life has been secured.

Application	Evaluation Result	Target
Company H	20,526ea	20,000ea 🔺
Company I	18,250ea	18,000ea 🔺

Company "H" Outer Race mold Company "I" T/P Housing mold